Explore Millionen Grad, Player Poster and more!

Explore related topics

Kernfusion: Erstes Wasserstoffplasma am Wendelstein 7-X - Wendelstein 7-X ist ein Großexperiment der Max-Planck-Gesellschaft, an dem für die Kernfusion geforscht wird. Es ist ein wulstartiger Ring - wie ein Rettungsring oder ein Donut - mit einem Durchmesser von 16 Metern. Umgeben ist der Ring von einer komplizierten Struktur von 50 supraleitenden Magnetspulen. Sie erzeugen einen Magnetfeldkäfig, der das 80 Millionen Grad heiße Plasma hält.

Kernfusion: Erstes Wasserstoffplasma am Wendelstein 7-X - Wendelstein 7-X ist ein Großexperiment der Max-Planck-Gesellschaft, an dem für die Kernfusion geforscht wird. Es ist ein wulstartiger Ring - wie ein Rettungsring oder ein Donut - mit einem Durchmesser von 16 Metern. Umgeben ist der Ring von einer komplizierten Struktur von 50 supraleitenden Magnetspulen. Sie erzeugen einen Magnetfeldkäfig, der das 80 Millionen Grad heiße Plasma hält.

2007 war das Gelände gerodet. (Foto: AIF-VDC) -  Die Kernfusion gilt als Energiequelle der Zukunft. Am Iter soll erstmals eine Kernfusion mit einer positiven Energiebilanz durchgeführt werden - also gezeigt werden, dass die Energieversorgung der Sterne auch auf der Erde möglich ist.

2007 war das Gelände gerodet. (Foto: AIF-VDC) - Die Kernfusion gilt als Energiequelle der Zukunft. Am Iter soll erstmals eine Kernfusion mit einer positiven Energiebilanz durchgeführt werden - also gezeigt werden, dass die Energieversorgung der Sterne auch auf der Erde möglich ist.

Helium-3: Die Utopie im Weltraum-Es wird als möglicher Brennstoff für die Kernfusion gehandelt. Bei der Fusion von Helium-3 und Deuterium entsteht genauso viel Energie wie bei der "konventionellen" Fusion von Tritium und Deuterium. Es ist aber keineswegs leichter, Helium-3 anstelle von Tritium zu benutzen. Es ist sogar viel schwerer. Die "konventionelle" Kernfusion von Deuterium und Tritium erreicht etwa die 100-fache Leistungsdichte der Kernfusion von Helium-3 mit Deuterium und braucht…

Helium-3: Die Utopie im Weltraum-Es wird als möglicher Brennstoff für die Kernfusion gehandelt. Bei der Fusion von Helium-3 und Deuterium entsteht genauso viel Energie wie bei der "konventionellen" Fusion von Tritium und Deuterium. Es ist aber keineswegs leichter, Helium-3 anstelle von Tritium zu benutzen. Es ist sogar viel schwerer. Die "konventionelle" Kernfusion von Deuterium und Tritium erreicht etwa die 100-fache Leistungsdichte der Kernfusion von Helium-3 mit Deuterium und braucht…

Kernfusion: Iter ist auf dem Weg -  In etwa zwei Jahren werde der Tokamak-Komplex weitgehend fertig sein - der Tokamak, ein hohler Ring, ist die Kammer, in der die Fusion stattfinden soll. Dann werde mit der Montage des Fusionsreaktors begonnen.

Kernfusion: Iter ist auf dem Weg - In etwa zwei Jahren werde der Tokamak-Komplex weitgehend fertig sein - der Tokamak, ein hohler Ring, ist die Kammer, in der die Fusion stattfinden soll. Dann werde mit der Montage des Fusionsreaktors begonnen.

Durch andere Techniken wie den Einschuss von Teilchen in den Torus von außen können Plasmaentladungen in Tokamaks mittlerweile immerhin für mehrere Minuten stabil gehalten werden. In Frankreich konnte der Tore Supra Tokamak Entladungen mit über 4 Minuten Dauer erreichen und vor kurzem erreichte auch der chinesische "EAST" eine Entladung von knapp 2 Minuten

Durch andere Techniken wie den Einschuss von Teilchen in den Torus von außen können Plasmaentladungen in Tokamaks mittlerweile immerhin für mehrere Minuten stabil gehalten werden. In Frankreich konnte der Tore Supra Tokamak Entladungen mit über 4 Minuten Dauer erreichen und vor kurzem erreichte auch der chinesische "EAST" eine Entladung von knapp 2 Minuten

Der Reaktor für ein Fusionskraftwerk, wie es etwa aus dem Iter-Projekt entstehen soll, muss ein Gas aus Deuterium und Tritium bei etwa 100 Millionen Grad und etwa 10 Bar Druck kontrolliert in der Schwebe halten, ohne dass zu viel Energie aus dem Gas verloren geht. Das ist überhaupt nur möglich, weil sich bei solchen Temperaturen die Elektronen von den Atomkernen gelöst haben und frei beweglich sind. Es ist damit ein Plasma, das auf elektrische und magnetische Felder reagiert.

Der Reaktor für ein Fusionskraftwerk, wie es etwa aus dem Iter-Projekt entstehen soll, muss ein Gas aus Deuterium und Tritium bei etwa 100 Millionen Grad und etwa 10 Bar Druck kontrolliert in der Schwebe halten, ohne dass zu viel Energie aus dem Gas verloren geht. Das ist überhaupt nur möglich, weil sich bei solchen Temperaturen die Elektronen von den Atomkernen gelöst haben und frei beweglich sind. Es ist damit ein Plasma, das auf elektrische und magnetische Felder reagiert.

Der Weg zum ersten Fusionsreaktor Tokamaks waren der erste große Durchbruch auf dem Weg zur Kernfusion. 1968 erreichte ein Tokamak in der Sowjetunion schon Temperaturen über 1.000 Elektronenvolt - etwa 12 Millionen Kelvin. Nachdem die erste Ungläubigkeit überwunden war, wurden auch im Rest...

Der Weg zum ersten Fusionsreaktor Tokamaks waren der erste große Durchbruch auf dem Weg zur Kernfusion. 1968 erreichte ein Tokamak in der Sowjetunion schon Temperaturen über 1.000 Elektronenvolt - etwa 12 Millionen Kelvin. Nachdem die erste Ungläubigkeit überwunden war, wurden auch im Rest...

Pinterest
Search